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Introduction

Introduction

Standard linear regression focuses only on the expectation of a variable Y
conditional on a set of regressors X which gives us only a partial description of
the conditional distribution Y |X. But sometimes we need to describe the
relationship at different points in the conditional distribution of Y for which
Quantile Regression is needed.

Quantile regression extends this approach, allowing one to study the conditional
distribution of Y on X at different locations and thus offering a global view on the
interrelations between Y and X. Using an analogy, we can say that for regression
problems, QR is to classical regression what quantiles are to mean in terms of
describing locations of a distribution.
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Quantile-Based Measures of Location and Shape

Quantile-Based Measures of Location and Shape

We should get familiar with quantile-based measure of central location. Like
instead of the mean (the first moment of a density function), the median (the
0.5th quantile is used to indicate the centre of skewed distribution.

Using quantile-based location allows us to get a more general notion of location of
a distribution beyond just the centre; like, we can find the location of the lower
tail or upper tail for for specific sub-populations.

Two basic properties describe the shape of a distribution: scale and skewness.
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Quantile-Based Measures of Location and Shape

To get the spread of the distribution without relying on standard deviation, we
measure spread using following quantile-based scale measure(QSC) at a selected
θ:

QSC(θ) = Q(1− θ)−Q(θ) for θ < 0.5

This way we can get the spread of any desirable middle (100− 2θ)% of population.

A model-based approach that separates out a predictor’s effect in terms of a
change in scale as measured by the standard deviation limits the possible patterns
that could be discovered. In contrast, the QSC measure not only offers a direct
and straightforward measure of scale but also facilitates the development of a rich
class of model-based scale-shift measures.

We many times use the terms upper spread which refer to the spread above the
median and the lower spread which refer to the spread below the median.
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Quantile-Based Measures of Location and Shape

The second measure of distributional shape is skewness. This property focusses on
inequality of distribution. Skewness is generally measured using a cubic function
of data points’ deviations from the mean. When the data points are symmetrically
distributed about the sample data mean, the value of skewness is 0. We quantify
the measure of quantile-based skewness (QSK) as a ratio of the upper spread to
the lower spread minus one at selected θ:

QSK(θ) =
Q(1− θ)−Q(0.5)

Q(0.5)−Q(θ)
− 1 for θ < 0.5

The quantity QSK(θ) is recentered using subtraction of one, so that it takes the
value zero for a symmetric distribution. A value greater than zero indicates
right-skewness and a value less than 0 indicates left-skewness. Skewness can be
interpreted as saying that there is an imbalance between the spread below and
above the median.
This definition of QSK(θ) is simple and straightforward and can be extended to
measure the skewness shift caused by a covariate.
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Quantiles as solutions of a minimization problem

Quantiles as solutions of a minimization problem

Comparison of mean and quantiles and their objective functions : Let Y be
a random variable then its mean say µ appears as the solution to the following
minimization problem :

µ = argmin
a

E[(Y − a)2]

Similarily the median minimizes the absolute sum of deviations. In terms of a
minimization problem, the median is thus :

Me = argmin
a

E[|Y − a|]

Pranava Priyanshu and Ankan Kar (ISI,Bangalore) Quantile Regression Presentation, February 1st, 2023 6 / 54



Quantiles as solutions of a minimization problem

Quantile Functions : Let Y be a univariate random variable with commulative
distribution function FY then its quantile function at θ ∈ [0, 1] is defined as :

QY (θ) = inf(y : FY (y) ≥ θ)

If FY is strictly increasing and continuous, then F−1(θ) is the unique real number
y such that FY (y) = θ.

It turns out that the θ − th quantile is the solution of the minimization problem :

min
a
E[ρτ (Y − a)], where ρτ (x) = (τ − 1(x < 0))x and τ ∈ (0, 1)

Let fY (y) be the pdf of Y and assume that f is a continuous function and Y has
a unique τ − th quantile, then :
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Quantiles as solutions of a minimization problem

E[ρτ (Y − a)] = τ

∫ ∞

a

(y − a)fY (y)dy + (τ − 1)

∫ a

−∞
(y − a)fY (y)dy

= τ(

∫ ∞

a

yfY (y)dy − a

∫ ∞

a

fY (y)dy) + (τ − 1)(

∫ a

−∞
yfY (y)dy − a

∫ a

−∞
fY (y)dy

Differentiationg wrt a to obtain the first order condition we get :

τ(−afY (a)+ afY (a)+

∫ ∞

a

fy(y)dy)+ (τ − 1)(afY (a)− afY (a)−
∫ a

−∞
fY (y)dy)

=0

=⇒ Fy(a)− τ = 0 =⇒ a = F−1
Y (τ)

Taking τ = 0.5, the above problem boils down to minimizing the absolute sum of
deviations the solution of which is median.
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Conditional Means and Quantiles

Conditional Means and Quantiles

Suppose that Y is the response variable and X is the set of predictor variables the
idea of the unconditional mean as the minimizer of E[(Y − a)2] can be extended
to the estimation of the conditional mean function :

µ̂(xi, β) = argmin
µ

E[(Y − µ(xi, β))
2],where µ(xi, β) = E[Y |X = xi]

When the conditional mean function is linear i.e µ(xi, β) = xT
i β, then the

previous equation becomes :

β̂ = argmin
β

E[Y − xT
i β]

which is the least squares linear regression model.
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Conditional Means and Quantiles

We can extend this approach to the generic τ − th quantile in which case we
obtain :

q̂Y (τ,X) = argmin
QY

E[ρτ (Y −QY (τ,X)],where QY (τ,X) = Qτ [Y |X = x]

is the conditional quantile function. Likewise, for the linear model case the
previous equation becomes:

β̂τ = argmin
β

E[ρτ (Y − Xβ)]

The sample version is :

β̂τ = argmin
β

∑n
i=1 ρτ (yi − xt

iβ)
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QR Model with Dummy Regressor

QR Model with Dummy Regressor

The simplest form of linear model is a model with a quantative response variable
and a dummy predictor variable. The estimation of the QR model:

Ŷ = β̂0(θ) + β̂1(θ)X

for different values of θ ∈ [0, 1] permits us to an estimation of the Y quantiles for
the groups of X. Like when X is a dichotomous predictor variable then we get two
groups of X as 0 or 1. Then we get;

Ŷ = β̂0(θ) + β̂1(θ)× 0 = β̂0(θ) for X = 0 and;

Ŷ = β̂0(θ) + β̂1(θ)× 1 = β̂0(θ) + β̂1(θ) for X = 1
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QR Model with Nominal Regressor

QR Model with Nominal Regressor

In this linear model we will have the predictor variable as a multilevel categorical
variable with g categories. Here QR allows us to compare the different quantiles
among the different g groups.

To deal with a g level nominal variable we need to introduce g - 1 dummy
variables. We then get this QR model:

Ŷ = β̂0(θ) +

g−1∑
i=1

β̂i(θ)I(xi)

where I(.) is the indicator function returning 1 if the particular unit assumes the
value in the paranthesis 0 otherwise. In this model for a given quantile the
combination of intercept with different slopes gives us the conditional quantiles of
the response variable.
The estimated effect of a particular group can be obtained by using the dummy
variable associated with the particular slope.
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A typical QR model

A typical QR model

As already mentioned, QR is an extension of the classical estimation of conditional
mean models to conditional quantile functions; that is an approach allowing us to
estimate the conditional quantiles of the distribution of a response variable Y in
function of a set X of predictor variables. In the framework of a linear regression,
the QR model for a given conditional quantile τ can be formulated as follows :

Qτ (Y |X) = Xβ(τ), τ ∈ (0, 1)

The parameter estimates in QR linear models have the same interpretation as
those of any other linear model, as rates of change. Therefore, in a similar way to
the OLS model, the βi(τ) coefficient of the QR model can be interpreted as the
rate of change of the τ -th quantile of the dependent variable distribution per unit
change in the value of the i-th regressor
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The linear programming formulation for the QR problem

The linear programming formulation for the QR problem

Suppose we have a linear QR model yi = β0 + β1xi + ϵi, i = 1, 2, .....n and we
want to estimate the conditional median of Y , then we have the following
minimization problem :

min
β0,β1

∑n
i=1 |β0 + β1xi − yi|

The equivalent linear programme can be written as :

minimize
∑n

i=1 ei
subject to ei ≥ β0 + β1xi − yi, i = 1, 2, .....n

ei ≥ −(β0 + β1xi − yi), i = 1, 2, .....n

The constraints guarantee that ei ≥ |β0 + β1xi − yi|. In an optimal solution, ei
has to satisfy ei = |β0 + β1xi − yi| otherwise, we can decrease the corresponding
ei.
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The linear programming formulation for the QR problem

The p-variables problem: The model for QR is Y = Xβ(τ) + ϵ where Y is a
vector of responses, X is the regression matrix, β(τ) is the vector of unknown
parameters for the generic conditional quantile τ and ϵ is the vector of unknown
errors. We get the estimate for the τ -th quantile by solving :

min
β

n∑
i=1

ρτ (yi − xT
i β)

We want to get an equivalent linear programming problem in the standard form.
Let ϵi = ui − vi where ui = max(0, ϵi) and vi = max(0,−ϵi). Then we can write

n∑
i=1

ρτ (ϵi) =

n∑
i=1

τui + (1− τ)vi = τ1⊤
n u+ (1− τ)1⊤

n v

where u = (u1, ......un)
′ and v = (v1, .....vn)

′
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The linear programming formulation for the QR problem

Now the residuals must satisfy the n constraints yi − x⊤
i β = ϵi = ui − vi and so

we get the following linear programme :

min
β∈Rp,u∈Rn

+,v∈Rn
+

{τ1⊤
n u+ (1− τ)1⊤

n v|yi = xT
i β + ui − vi, i = 1, ..., n}

The elements of β are still not positive which is required for a LP in standard
form. So let β = β+ − β− where β+ = (β+

1 , ....β+
p ) and β− = (β−

1 , .....β−
p ) in a

similar way as we did for the residuals. Then the n constraints can be written as :

Y =

y1...
yn

 =

x
⊤
1
...

x⊤
n

 (β+ − β−) + Inu− Inv,

where IN = diag{1N}.
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The linear programming formulation for the QR problem

Now we can write :

X(β+ − β−) + Inu− Inv = [X,−X, In,−In]


β+

β−

u
v

 = Az

where A = [X,−X, In,−In] and z = (β+, β−, u, v)T . Then we get our LP
problem as :

minimize
z

cT z

subject to Y = Az, z ≥ 0.

where c =

 0
τ1n

(1− τ)1n
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How does Quantile Regression Work

How does Quantile Regression Work

1.General Linear Position : A set of points in a d-dimensional Euclidean space
is in general linear position if no k of them lie in a k − 2-dimensional flat for
k = 2, 3, ..., d+ 1.

2.Subgradient : A subgradient of a function f : Rn → R is any vector g ∈ Rn

such that

f(y) ≥ f(x) + gT (y − x),∀y

3.Subgradient Optimality Condition : For any function f , x∗ is a minimizer if
and only if 0 is a subgradient of f at x∗ :

f(x∗) = min
x

⇔ 0 ∈ ∂f(x∗)

4.Subgradient of the sum is the sum of the subgradients : Suppose that
f = f1 + f2 + ......fm, where f1, .....fm are convex functions, then
∂f(x) = ∂f1(x) + ....+ ∂fm(x).
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How does Quantile Regression Work

5.If f is a differentiable function then ∇f = ∂f , the gradient is the only
subgradient.

6.Necessary and sufficient conditions for one half space to contain the
other : Suppose we have two half spaces gievn by

H1 = (x ∈ Rm : aT1 x ≤ b1) and H2 = (x ∈ Rm : aT2 x ≤ b2)

Then H1 ⊆ H2 iff there exists a k > 0 such that a2 = ka1 and kb1 ≤ b2

Let Y be the response variable and X be the regression matrix whose 1st column
has all the elements equal to 1.

Claim : When the regression observations (Y,X) are in general linear position
then the solutions to the regression analogue of our elementary problem,
min
β

∑n
i=1 ρτ (yi − xT

i β) has the property that roughly (1− τ)n of the residuals,

ri = yi − xT
i β, i = 1, 2, ....n are positive and τn are negative.
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How does Quantile Regression Work

Proof : The subgradient optimality condition implies that if β̂(τ) minimizes∑n
i=1 ρτ (yi − xT

i β), then

0 ∈ ∂β(
∑n

i=1 ρτ (yi − xT
i β))|β=β̂

Now ∂β(ρτ (yi − xT
i β) = −ϕτ (yi − xT

i β)xi with ϕ(x) = τ − 1(x < 0) whenever
yi ̸= xT

i β as at these points ρτ (yi − xT
i β) is differentiable and its gradient is the

only subgradient at these points. At the points where the residuals are zero, the
subgradient is set valued.
Fix a 1 ≤ i ≤ n. We show that ∂βρτ (yi − xT

i β) = [−τ, 1− τ ]xi.Let g be a

sugradient at β = β̂. Then by definition

ρτ (yi − xT
i β) ≥ ρτ (yi − xT

i β̂) + gT (β − β̂).

=⇒ ρτ (yi − xT
i β) ≥ gT (β − β̂) (∗)

Suppose β satisfies xT
i β ≤ yi then β lies in the half space

H = (b ∈ Rp : xT
i b ≤ yi)
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How does Quantile Regression Work

And so from (∗) we get that β lies in the half space

H0 = (b ∈ Rp : (τxi + g)T b ≤ τyi + gT β̂)

=⇒ H ⊆ H0

So by (6), there exists a k > 0 such that τxi + g = kxi and

kyi ≤ τyi + gT β̂ =⇒ g = xi(k − τ) . Now suppose β satisfies xT
i β >= yi then

β lies in the half space

H1 = (b ∈ Rp : −xT
i b ≤ −yi)

Again from (∗) we get that β lies in the half space

H2 = (b ∈ Rp : ((τ − 1)xi + g)Tβ ≤ (τ − 1)yi + gT β̂)

=⇒ H1 ⊆ H2
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How does Quantile Regression Work

Again by (6), there exists a k1 such that (τ − 1)xi + g = −k1xi =⇒ g =
(1− τ − k1)x1 =⇒ k − τ = 1− τ − k1 =⇒ k + k1 = 1 =⇒ 0 ≤ k ≤ 1. Also

for each such k we can easily check that g = (k − τ)xi is a subgradient at β = β̂.
So, whenever the residuals are zero we have

∂βρτ (yi − xT
i β) = [−τ, 1− τ ]xi

Let I, J,K be the sets of indices for which the residuals are positive, negative and
zero respectively. Then the subgradient of

∑n
i=1 ρτ (yi − xT

i β))|β=β̂ is of the form

∑
i∈I

−τxi +
∑
i∈J

−(τ − 1)xi +
∑
i∈K

aixi

where ai ∈ [−τ, 1− τ ].
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How does Quantile Regression Work

Now as 0 ∈ ∂β(
∑n

i=1 ρτ (yi − xT
i β))|β=β̂ , so there exits a sequence of ais such

that

∑
i∈I

−τxi +
∑
i∈J

−(τ − 1)xi +
∑
i∈K

aixi = 0

Also as the first coordinate of each xi is 1 so we get

∑
i∈I

−τ +
∑
i∈J

−(τ − 1) +
∑
i∈K

ai = 0 (∗∗)

Let xi1 , β̂1 denote the vector x and β̂ with their first coordinate removed and let

the first coordinate of β̂ be β̂0.Now for some i if the residual is zero then
yi = xT

i β̂ and so we get

(β̂1,−1)T
(
xi1

yi

)
= −β̂0
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How does Quantile Regression Work

This is a hyperplane of dimension p. As the observations (xi1 , yi) ∈ Rp and are in
general linear position so no more than p of them can lie on a hyperplane of
dimension p and hence the number of residuals equal to 0 is atmost p and so
|K| ≤ p. From (∗∗) and using the fact that ai ∈ [−τ, 1− τ ], we get

−τ |I| − (τ − 1)|J |+
∑

i∈K ai = 0

=⇒ |J | − τ(|I|+ |J |)− |K|τ ≤ 0 ≤ |J | − τ(|I|+ |J |) + (1− τ)|K|

Now as |I|+ |J |+ |K| = n so we get

|J|
n ≤ τ ≤ |J|+|K|

n ≤ |J|+p
n

=⇒ |I| ≤ (1− τ)n, |J | ≤ τn

So roughly (1− τ)n of the residuals are positive and roughly τn are negative.

Hence solutions β̂(τ) of such minimization problems can be considered analogues
of the sample quantiles for the linear model, estimating the parameters of models
that specified affine conditional quantile functions for Y |X.
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Homogeneous Error Models

Homogeneous Error Models

The Quantile Regression Model can be expressed as :

yi = xT
i β

τ + ϵτi , i = 1, 2, ....n, τ ∈ (0, 1)

When the error terms have constant variance then the model is said to be
homogeneous and the error terms are called homoscedastic errors. We will
consider special cases where the error terms are independent and identically
distributed. In such cases the θ-th quantile of Y |xi is

QY |xi
(θ) = xT

i β
τ +Qϵτi

(θ)

Now as ϵis are i.i.d so Qϵτi
(θ) is independent of i and only depends on τ, θ. So we

can write

QY |xi
(θ) = xT

i β
τ + cτ,θ

We conclude that in the i.i.d. case, the conditional quantile functions are simple
shifts of one another.
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Homogeneous Error Models

In case on only one regressor our model becomes
yi = β0 + xiβ

τ
1 + ϵτi , i = 1, 2, ....n, τ ∈ (0, 1) and the conditional quantile

functions are parallel lines with diferent intercepts when the error terms are iid.

We illustrate this fact by simulating some generated data. 10000 observations of
an independent variable xi are generated from N(10, 1), the dependent variable is
computed as yi = 1 + 2xi + ϵi where the error terms are generated from N(0, 1).

The OLS estimates and the QR estimates for
τ = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 are computed and the corresponding
regression lines are ploted in the picture below :
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Homogeneous Error Models

The middle dashed line is the OLS regression line and the blue lines are the regression lines for
τ = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95
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Homogeneous Error Models

In the case when the error terms are iid and follow N(0, 1) then the QR estimates
can be obtained by just shifting the OLS regression line by adding or substracting
the corresponding standardized normal quantiles. This is illustrated in the picture
below :

The middle dashed line is the OLS regression line the the other dashed lines are obtained by shifting the OLS
line by adding or substracting the corresponding N(0, 1) quantiles. The blue lines are estimated QR lines
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Heterogeneous Error models

Heterogeneous Error models

These are the models in which the error terms have non constant variance and
these errors are called heteroscedastic error terms. In such cases the OLS
regression porvides an incomplete picture of the relationship between the variables
as it focusses only on the conditional mean. On the other hand QR becomes
much more powerful tool in such cases. By estimating different conditional
quantiles using QR one can get a complete view of the conditional distribution of
Y |X = x. In heterogeneous error models, both the slope and the intercept vary
across different quantiles (location-scale model).

In order to take into account a simple heteroscedastic pattern, we consider the
following model, starting from the standard normal error term

yi = 1 + 2xi + (1 + xi)ϵi

Again the independet variable xi is generated from N(0, 1) but this time the
dependent variable is computed as yi = 1+ 2xi + (1+ xi)ei where the error terms
are generated from N(0, 1).
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Heterogeneous Error models

Scatter plot of the data points generated by the model y = 1 + 2x + (1 + x)ϵ
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Heterogeneous Error models

The middle dashed line is the OLS line and the blue lines are the QR lines for τ = 0.1, 0.25, 0.5, 0.75, 0.9

From the plot above it is clear that the QR lines for different quantiles vary not
only in the intercept but also in the slope in the case of heteroscedasticity.
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Heterogeneous Error models

The estimates for both the homegeneous and heterogeneous models are
listed below :

Homogeneous Model :

Heterogeneous Model :
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QR prediction intervals

QR prediction intervals

Prediction Intervals : A 100(1− α)% prediction interval for Y |X = x is an
interval [l, u] such that

P (l ≤ Y ≤ u|X = x) = 1− α

If Y is a continuous random variable with invertible CDF FY then
[F−1

Y (τ1), F
−1
Y (τ2)] is a 100(τ2 − τ1)% prediction interval for Y as

P(F−1
Y (τ1) ≤ Y ≤ F−1

Y (τ2)) = P (Y ≤ F−1
Y (τ2))− P (Y ≤ F−1

Y (τ1)) =
FY (F

−1
Y (τ2))− FY (F

−1
Y (τ1)) = τ2 − τ1

Hence, QR estimates can also be used to obtain prediction intervals for the
conditional distribution of the response variable. For a given model, the interval
provided by two distinct quantile estimates, q̂Y (τ1,X = x) and q̂Y (τ2,X = x), at
any specified value of the regressor X, is a 100(τ2 − τ1)% prediction interval for a
single future observation.
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QR prediction intervals

10-th percentile and 90-th percentile, [qY (τ = 0.1, X = x), qY (τ = 0.9, X = x)], of the population
conditional distribution Y |X = x in correspondence with five distinct values of X
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QR prediction intervals

Prediction intervals for the 10 illustrative models at five distinct values of X
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QR prediction intervals

Empirical coverage levels for OLS and QR prediction intervals computed using 1000 random samples extracted
from each of the 4 considered models (rows of the table). The intervals are computed for five distinct values

of X (columns of the table) to cover the whole range of the regressor.

The obtained percentages show how QR prediction intervals offer an empirical
coverage level consistent with the nominal one for all the models, in spite of the
nature of the error term. The rows for OLS prediction intervals indicate their
underperformance in the case of a violation of the normal classical framework
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Empirical distribution of the quantile regression estimator

Empirical distribution of the quantile regression estimator

The case of i.i.d. errors : Consider the Linear Quantile Regression model
yi = xT

i β
τ + ϵτi , i = 1, ....n with i.i.d error terms having a pdf f and cdf F which

is strictly positive at a given quantile f(F−1(τ)). Then the quantile regression

estimator β̂(τ) is asymptotically distributed as√
(n)(β̂(τ)− β(τ)) → N(0, ω2(τ)D−1) (∗)

with scale parameter ω2(τ) = τ(1−τ)
f(F−1(τ))2 , being a function of s = f(F−1(τ))

called the sparcity function and D = limn→∞
XTX
n is a assumed to be a positive

definite matrix.

The asymptotic distribution of the QR estimator in (∗) is explored by means of a
small simulation experiment. One hundred observations of an independent
variable, xi, are drawn from a χ2

4 distribution and the dependent variable is
computed as yi = 3 + 0.7xi + ei and the error term ei follows, in turn, a standard
normal distribution, a χ2

5 distribution and a Student-t with 2 degrees of freedom.
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Empirical distribution of the quantile regression estimator

OLS and median regression when the errors are drawn from a standard normal distribution. The difference
between the median and the OLS regression is minor.
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Empirical distribution of the quantile regression estimator

OLS and median regression when the errors are drawn from a χ2
5 distribution. This error distribution generates

five outliers in the dependent variable, as can be seen in the top section ofthe graph. The outliers shift upward
the OLS fitted line but not the median regression.
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Empirical distribution of the quantile regression estimator

OLS and median regression when the errors are drawn from a Student-t2 distribution. This distribution
generates outliers which tilt the OLS fitted line but not the median regression
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Empirical distribution of the quantile regression estimator

By repeating 1000 times each experiment, the estimated coefficients of each
iteration are collected and the empirical distributions of the estimated slope are
reported below :

Empirical distributions of the QR estimates of the slope in 1000 replicates in the case of i.i.d. standard normal
errors. The solid line is the normal density and the dashed line is the kernel density. The good approximation
of the empirical distributions and their kernel smoothed version to the normal density shows the asymptotic

normality of the QR estimator.
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Empirical distribution of the quantile regression estimator

Empirical distributions of the QR estimates of the slope in 1000 replicates in the case of i.i.d. errors following
a χ2

5 distribution, The solid line is the normal density and the dashed line is the kernel density. The good
approximation of the empirical distributions and their kernel smoothed version to the normal density shows the

asymptotic normality of the QR estimator.
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Empirical distribution of the quantile regression estimator

Empirical distributions of the quantile regression estimated slope in 1000 replicates in the case of i.i.d. errors
following a Student-t with 2 degrees of freedom. The solid line is the normal density and the dashed line is the
kernel density. The good approximation ofthe empirical distributions and their kernel smoothed version to the

normal density shows the asymptotic normality of the QR estimator.
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Empirical distribution of the quantile regression estimator

The case of i.ni.d. errors : Non-identically distributed errors are generally
characterized by changing variance across the sample, which implies an error
density fi changing in the sample. In the case of non-identically distributed fi,
the asymptotic distribution of the QR estimator is given by :√

(n)(β̂(τ)− β(τ)) → N(0, τ(1− τ)D1(τ)
−1DD1(τ)

−1),

where D1 = limn→∞

∑
i fi(F

−1(τ))xT
i xi

n

The simulations for i.ni.d. errors consider the same explanatory variable xi

following χ2
4 but a different definition of the error term ei. In each iteration, the

first 50 observations of ei are drawn from a standard normal while the second half
of the sample follows a zero mean normal distribution having variance 100. In this
subset the errors, and thus the yis , are more dispersed than in the first half of the
sample. Once again the dependent variable is defined as yi = 3 + 0.7xi + ei.

The plot below shows the 1st iteration of the experiment in the case of i.ni.d
errors.
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Empirical distribution of the quantile regression estimator

OLS and median regression in the case of i.ni.d. errors. This error distribution generates half the observations
by a standard normal, and these are the points closer to the fitted line. The remaining half of the data are
generated by a N(0, 100), and these are the farthest observations in the graph. The mean and median

regression have differing slopes.
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Empirical distribution of the quantile regression estimator

Empirical distributions of the QR estimated slope in 1000 replicates in the case of i.ni.d. errors. The solid line
is the normal density and the dashed line is the kernel density. Away from the median the distributions become
skewed, left skewed at the lower quartile and right skewed at the higher one. At the median the approximation

of the empirical distribution and its kernel smoothed version to the normal density is good.
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Empirical distribution of the quantile regression estimator

Empirical distribution of the estimated slope in 1000 replicates, with N(0, 1), χ2
5, t2, non-identically

distributed, and dependent errors, in the model yi = 3 + 0.7xi + ei.

These results confirm that the QR estimator is indeed unbiased, since the sample
mean is equal to the true coefficient or is very close to it. In the case of normality
OLS provides the smallest standard deviations.
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Wald, Likelihood Ratio and Lagrange Multiplier tests

Wald, Likelihood Ratio and Lagrange Multiplier testss

Wald Test : Suppose we have the quantile regression model Y = Xβ + ϵ and we
want to test the usefulness of some of the regressors i.e we want to test

H0 : βi1 = βi2 = ....βik = 0

Let H be a k × p matrix such that H(j, ij) = 1, j = 1, ....k and rest all other
elements are equal to 0. So our H0 is Hβ = 0 where β = (β1, ...., βp)

T .

Now we know that
√
n(β̂(τ)− β(τ)) → N(0, ω2(τ)D−1) where

D = limn→∞
XTX
n . Then

√
n(Hβ̂(τ)−Hβ(τ)) → N(0, ω2(τ)HD−1HT ). Under

the null hypothesis Hβ(τ) = 0, so we get

√
n(Hβ̂(τ)) → N(0, ω2(τ)HD−1HT )

under the null hypothesis.
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Wald, Likelihood Ratio and Lagrange Multiplier tests

We know that if X ∼ Np(µ,
∑

) then (X − µ)T
∑−1

(X − µ) ∼ χ2
p. So,

√
n(Hβ̂(τ))(ω2(τ)HD−1HT )−1

√
n(Hβ̂(τ)) → χ2

k

=⇒ n(Hβ̂(τ))(ω2(τ)HD−1HT )−1(Hβ̂(τ)) → χ2
k − (∗)

So when n is large we can use the LHS of (∗) as our test statistic and if

n(Hβ̂(τ))(ω2(τ)HD−1HT )−1(Hβ̂(τ)) < χ2
k(1− α)

, then we can safely exclude these regressors with 100(1− α)% confidence.
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Wald, Likelihood Ratio and Lagrange Multiplier tests

Likelihood Ratio Test : To test the same hypothesis we have another method
with the test function

LR = 2ω−1(Ṽ (τ)− V̂ (τ))

, where ω2(τ) = τ(1−τ)
f(F−1(τ))2 . Suppose that yi = xi,restrictedβrestricted + ϵ be the

restricted model then Ṽ (τ) and V̂ (τ) are defined as :

Ṽ (τ) =
∑n

i=1 ρτ (yi − xi,restrictedβ̂restricted)

V̂ (τ) =
∑n

i=1 ρτ (yi − xT
i β̂ + ϵ)

Under the null hypothesis LR follows χ2
k distribution where k is the number of

regressors under test. If LR < χ2
k(1− α) then we can safely exclude these

regressors.
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Wald, Likelihood Ratio and Lagrange Multiplier tests

Lagrange Multiplier Test : The LM test is implemented by estimating an
auxiliary regression. The residuals of the constrained model become the dependent
variable of an additional regression having as explanatory variables those regressors
excluded from the model. The term nR2 is asymptotically χ2 with degrees of
freedom equal to the number of variables under test. The auxiliary regression
checks if the excluded regressors have any explanatory content that would be lost
once they were eliminated from the main equation. If the variables are erroneously
excluded, they will explain at least part of the residuals from the main equation,
the auxiliary regression will have a large nR2 and the null on the validity of the
constraints will be rejected. Coversely, if the regressors under test are superfluous,
in the auxiliary equation the nR2 term is small and the null is not rejected.
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Estimating the variance of quantile regressions

Estimating the variance of quantile regressions

In the Quantile regression model Y = Xβ + ϵ, when the error terms are iid we
know that

√
n(β̂(τ)− β(τ)) → N(0, ω2(τ)D) where the scale parameter of the

model ω2(τ), at the selected quantile τ ,is defined as ω2(τ) = τ(1−τ)
f(F−1(τ))2 . The

term s(τ) = f(F−1(τ)) is unknown and has to be estimated. Many different
estimators have been proposed and one of them is :

ŝ(τ) = F−1(τ+h)−F−1(τ−h)
2h

The sparsity function s(τ) can be computed by differentiating the quantile
function F−1(τ), s(τ) = d

dτ (F
−1(τ)) = 1

f(F−1(τ)) and thus it represents the slope

of the tangent to the quantile function at point τ . This slope can be approximated
by the slope of the secant to the quantile function at points t+ h and t− h.

Pranava Priyanshu and Ankan Kar (ISI,Bangalore) Quantile Regression Presentation, February 1st, 2023 52 / 54



Estimating the variance of quantile regressions

The value of h as suggested by Koenker is

h = n−0.2

[
4.5ϕ4(Φ−1((τ))

(2Φ−1(τ)2 + 1)2

]0.2
Now we need to estimate the quantile function F (τ ± h). We can use the

residuals yi − xT
i β̂ to estimate F−1(τ).
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